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Abstract: De novo predictions of protein structures at high resolution are plagued by the problem

of detecting the native conformation from false energy minima. In this work, we provide an

assessment of various detection and refinement protocols on a small subset of the second-

generation all-atom Rosetta decoy set (Tsai et al. Proteins 2003, 53, 76-87) using two

potentials: the all-atom CHARMM PARAM22 force field combined with generalized Born/surface-

area (GB-SA) implicit solvation and the DFIRE-AA statistical potential. Detection schemes

included DFIRE-AA conformational scoring and energy minimization followed by scoring with

both GB-SA and DFIRE-AA potentials. Refinement methods included short-time (1-ps) molecular

dynamics simulations, temperature-based replica exchange molecular dynamics, and a new

computational unfold/refold procedure. Refinement methods include temperature-based replica

exchange molecular dynamics and a new computational unfold/refold procedure. Our results

indicate that simple detection with only minimization is the best protocol for finding the most

nativelike structures in the decoy set. The refinement techniques that we tested are generally

unsuccessful in improving detection; however, they provide marginal improvements to some of

the decoy structures. Future directions in the development of refinement techniques are discussed

in the context of the limitations of the protocols evaluated in this study.

1. Introduction
Protein structure prediction is becoming an increasingly
important part of the biologist’s toolkit as the number of
protein-encoding DNA sequences from genomic studies
vastly outnumbers the available experimentally obtained
protein structures. Structure prediction has been tackled by
a variety of strategies depending on the similarity of a target
amino acid sequence to known protein structures. Compara-
tive modeling is used when the target sequence is very close
to one or more known protein structures.1 Fold prediction
and threading are employed when the sequence can be

matched through profile similarities with one or more known
structures.2 Finally, with little perceived similarity to known
folds, de novo algorithms generate protein structures either
by united-residue folding simulations3 or fragment assembly.4

The Rosetta program from the Baker group4 is considered
one of the top methods for de novo structure predictions.
Traditionally, de novo folding has been used as a last resort
for protein structure prediction. The Rosetta protocol has
proven to be very powerful for predicting structures where
the fold and its subsequent template alignment can be
guessed, but the fold prediction is less than certain.5 Rosetta
can generate structures of low to medium resolution in many
cases, although detecting such structures as being near-native
is frequently difficult.6-8 Near-native, in the context of this
work, refers to structural models whose root-mean-square-
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deviation (rmsd) of their alpha-carbon backbone (CR) are
within 2-3 Å of the experimentally determined structure.
Often for a given protein target, between 10 000 to 100 000
models must be generated for a few models to be near-native
structures. Also, the more near-native structures that are
generated, the greater the likelihood an atom-based scoring
function will be able to detect one or more of the near-native
structures as the best scoring. Two criteria must be satisfied,
however, to make successful detection and refinement
possible. First, the scoring function should score the native
as lowest in energy compared to any misfolded structures.
In addition, it is necessary that as the native structure is
approached, as can be measured by various native-biased
metrics such as rmsd or fraction of native contacts, the scores
trend toward the native value. This requirement, which we
will call a “scoring funnel” is analogous to the folding funnel,
whereby real proteins move on a folding trajectory that take
on the native fold in a finite time due to some leaning,
however slight, toward the lowest free-energy basin.9 One
caveat in the connection between the scoring funnel and the
folding funnel is that the scoring function often lacks some
or all of the entropy contributions.10

Several refinement protocols have been considered in the
literature, although the problem remains largely unsolved.11

Presently, a grand challenge problem is to consistently refine
low- to medium-resolution protein structure predictions (e.g.,
CR rmsd> 4 Å) to the accuracy necessary for drug-based
design (e.g., CR rmsd< 2.5 Å.) Recent efforts have included
the work of Lu and Skolnick,12 which evaluated the effect
of short simulations (∼50 ps) using force field and knowledge-
based potentials. Misura and Baker7 outlined a scheme of
making random perturbations to the original Rosetta models,
which works well in tandem with their homology-based
enrichment procedure.8 Fan and Mark13 investigated the use
of long-time molecular dynamic simulations (>10 ns) in
improving initial models. In cases, where only small seg-
ments of a protein need to be “refined” (i.e., nonconserved
regions of a homology model), configurational enumeration
techniques can be quite successful.14-16 Nevertheless, larger
nonconserved regions (e.g., number of residues,Nres > 11)
are still difficult to model because the number of plausible
conformations increases exponentially with the number of
residues.

A priori knowledge of which protein conformations in a
large set of structures are near-native is an unsolved problem
because of three reasons. First, the side-chain packing may
not be correct, even if the backbone is near-native. In this
case, the high-resolution scoring function will often fail.
Second, the best structures may not be within the “radius of
convergence” of the native basin for a given energy function.8

Finally, the high-resolution energy function may sometimes
assign a lower energy to a non-native structure compared to
the native or near-native conformation.

The potential or scoring functions to discriminate and
refine protein structures are currently based on three meth-
ods: force-field based10,17,18 and knowledge-based19 and
hybrids of the two.6,7,20Force-field based detection functions
often employ a standard parameter set such as CHARMM
PARAM2221 or AMBER22 and an implicit solvent function

such as generalized Born(GB)23 or Poisson-Boltzmann.24

One of the goals of this work is to compare two different
but exemplary scoring functions, PARAM22/GB-SA17,25and
the all-atom distance-scaled ideal-gas reference state (DFIRE-
AA) statistical potential,19,26 for detection and refinement.
The SA denotes a simple solvent-accessible, surface area-
based treatment of the hydrophobic effect. PARAM22/GB-
SA exhibited one of the best detection capabilities among
several force-field based functions in an assessment of
CASP4 protein structures, where the specific model of GB
was GBMV2.17 GBMV2 is a molecular-volume dielectric
boundary implicit solvent model which does a good job in
mimicking the results of more expensive Poisson solvation
calculations.25

DFIRE-AA, on the other hand, is very good at distinguish-
ing the native structure from non-native conformations for
a wide variety of decoy sets.27 Statistical potential approaches
have also been successfully employed in the drug-docking
problem to detect native poses and estimate binding affini-
ties.27,28Also studied is the ability of such functions to detect
near-native structures3,29,30or optimal alignments of structural
templates in homology models.31,32 Statistical potentials are
developed from the growing database of crystal structures
in the Protein Data Bank (PDB).33 The traditional method
involves analyzing the probability distributions and subse-
quently the potentials of mean force along the distances
between pairs of atoms.

In this work, we introduce a hybrid force field for
molecular dynamics (MD) simulations that combines a
continuous version of the DFIRE-AA statistical potential with
the internal energies and van der Waals interactions of a
united-atom force field.12 Interestingly, MD simulations using
this hybrid potential quickly condense the protein and trap
it in a local minimum. To take advantage of the rapidity of
condensing a protein structure, we developed a method that
quickly unfolds and refolds a protein model, thereby generat-
ing hundreds of new protein models which can be scored
by the DFIRE-AA or any other discriminating energy
function. The hope is that some of the newly generated
protein models will be lower in energy and closer to the
native structure.

We first perform a standard comparison between the all-
atom PARAM22/GB-SA potential25 and the DFIRE-AA
statistical potentials34 for detection of native and near-native
protein structures using several sets of Rosetta-generated
protein conformations. We then perform replica exchange
simulations using separately the all-atom potential and an
MD-adapted form of the statistical potential. Replica ex-
change entails running several parallel simulation windows
spanning a range of temperatures35 whereby periodically
exchanges of temperature between windows are performed
based on a Metropolis Monte Carlo criterion. As a final
method, we look at unfolding/refolding of model structures
using the hybrid force-field/statistical potential.

2. Theory and Methods
2.1. Potentials.The DFIRE-AA statistical potential is one
of several knowledge-based potentials described in the
literature.29,36 It is defined as19
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wherei and j are non-hydrogen atom types,r is a pairwise
distance,rcut is the cutoff beyond which pairwise interactions
are neglected,∆r is the histogram bin size,Nobs is a
cumulative histogram of the observed occurrence of pairs
as a function of the pairwise distance,R is set to 1.61 based
on an empirical analysis of hard-sphere protein-like spatial
distributions,37 andkB andT are the Boltzmann constant and
absolute temperature, respectively. The parameter,η, is an
arbitrary constant that can be modified either to estimate free-
energy differences27 or to tune the strength of the DFIRE
energy term versus other energy terms. The histogramsNobs

in this work were obtained from analysis of a culled set of
1836 PDB structures from the PISCES server38 which had
better than 1.8-Å resolution and were less than 30%
homologous to each other. We deviated from the original
DFIRE protocol by assigning∆r ) 0.5 Å at all distances
and havingr range from 0.25 Å to 14.75 Å, such thatrcut )
15 Å.

Like many statistical potentials, the DFIRE model is not
suitable by itself for exploring the energy landscape without
some sort of restraints or constraints.12 In the case of Monte
Carlo exploration, one can sample different dihedral rotamers
of the backbone and side chains, where each conformation
is forced to obey standard bond lengths and bond angles. In
our case, where we desire to run molecular dynamics, a
further issue is that the DFIRE potential needs to be
smoothed out. We employed cubic interpolation39 to smooth
out the potential so that the first derivatives are continuous.
An example of this procedure is illustrated in Figure 1. Our
complete dynamics potential, denoted here as DFIRE-MD,
consists of the standard PARAM19 internal energy and van
der Waals attraction/repulsion terms and the smoothed
DFIRE-AA potential withη set to 0.25. As compared to
DFIRE-AA, DFIRE-MD only incorporates smoothed statisti-
cal potential energies from nonbonded list pairs which
include intraresidue pairs beyond 1-4 interactions. In minor
contrast, typical DFIRE-AA includes all pairs of atoms up
to precisely 15 Å excluding all intraresidue pairwise interac-
tions. Electrostatics and solvation were omitted in DFIRE-
MD as they were considered analogous to the contributions
of DFIRE-AA. The van der Waals term was retained so that
short-range steric interactions were properly modeled. Be-
sides the obvious issue of overcounting in this energy model,
it is questionable whether a statistical potential that defines
a free energy should be used as a potential for molecular
dynamics. Nonetheless, we are mainly concerned in this work
with the exploration of a scoring-function surface, and not
thermodynamics.

We also employ the all-atom PARAM22 force field21

combined with GBMV225 implicit solvent model. A linear
surface-area-based hydrophobic term of 30 cal/(mol‚Å2)17

was also included using the SASA-1 approximation.25 As
indicated in the Introduction, this combination potential,
which we will refer to as PARAM22/GB-SA, was one of
the best performers in a previous protein structure detection

study using the CASP4 predictions as decoy sets.17 We
believe that alternative implicit solvent models might lead
to a modest decrease in accuracy but being considerably more
computationally efficient may outweigh this.

2.2. Protein Model Sets.The specific interest of this work
is to assess detection and refinement of de novo-generated
protein structure models created by the Baker lab using the
Rosetta program.4 We looked at nine proteins in this study,
with the following PDB identifiers:33 1ail, 1csp, 1ctf, 1pgx,
1r69, 1tif, 1utg, 1vif, and 5icb (see Table 1). These proteins
were chosen based on their diversity of secondary structure,
availability of online Rosetta decoy sets (which we call
Rosetta2, denoting the second generation),6 availability of
X-ray crystal native structures, and overlap with previous
detection and refinement studies.7,8,40Each one of the decoy
sets contains approximately 1800 models, which consist of
∼1000 decoys from the original Rosetta decoy set,∼400
somewhat near to the native, and∼400 of the lowest CR
rmsd from an exhaustive 200 000 model Rosetta run.6 The
enrichment of low rmsd structures in these sets is certainly
an influence on our results and cannot be fairly compared
to a prediction protocol where far less than 200 000 Rosetta
models are generated. This issue is considered more in the
Discussion section.

uDFIRE(i,j,r) ) -ηkBT ln[ Nobs(i,j,r)

( r
rcut

)R ∆r
∆rcut

Nobs(i,j,rcut)] (1)

Figure 1. Regular and smoothed DFIRE-AA potential for the
pairwise interaction of two alanine CRs. The circles denote
the regular DFIRE-AA potential values at the bin centers. The
solid curve is the cubic-interpolated version suitable for MD
simulations.

Table 1. Features of the Nine Protein Decoy Sets Used in
This Work

best rmsd best % ncb

PDB
ID Nres

a
%

alpha
%

beta

no. of
decoys
in set rmsd

%
ncb rmsd

%
ncb

1ail 67 85 0 1807 2.0 55 2.0 55
1csp 64 0 53 1809 3.2 43 3.9 46
1ctf 67 52 19 1922 2.7 57 3.5 64
1pgx 57 25 46 1851 1.5 63 1.5 63
1r69 61 64 0 1733 1.4 64 1.4 69
1tif 59 17 37 1849 2.6 56 2.6 56
1utg 62 79 0 1897 3.4 36 5.4 53
1vif 48 0 50 1896 0.4 56 1.2 86
5icb 72 57 6 1870 3.0 58 3.1 59

a Number of residues in protein. b % nc - percentage of native
contacts.
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For the first statistical potential detection trial, the all-
atom decoys were used as-is. For all of the other methods,
the Rosetta models were converted to a PARAM19 format
using the Multiscale Modeling Tools for Structural Biology
(MMTSB) conVpdb.pl command and minimized modestly
to remove steric clashes (MMTSBminCHARMM.plcom-
mand interfaced with CHARMM41): 50 steps with a steepest
descent algorithm followed by 100 steps with an adopted
basis Newton-Raphson protocol. The energy function for
minimization used a distance-based dielectric electrostatic
term with a coefficient of 4.17

2.3. Clustering.While results may vary for other sets of
Rosetta-generated models, low CR-rmsd structures often show
up in the Rosetta2 decoy sets as seen in Table 1. Also, the
population of these low CR-rmsd models may be diminish-
ingly small.6 In general, we observe that at the collection
phase after a Rosetta run, it is imperative not to discard
structures solely by score, because they could actually be
the best models, i.e., nearest-native. However, some amount
of filtering needs to take place before any computationally
intensive refinement procedure such as replica exchange or
Z-fold (both described below). In this work, we hierarchically
cluster Rosetta-generated decoy structures6 to obtain a diverse
set of structures using the MMTSB commandcluster.plwith
the -jclust option. Our nondefault clustering parameters
included a maximum of four subclusters per parent cluster
(-maxnum option) and minimum of four elements per
subcluster (-minsizeoption.) The clusters were selected from
the fourth hierarchical level, such that in each decoy set, at
least 16 clusters could be identified in all of the protein sets.
The average DFIRE-AA scores from each cluster were
ranked, and the lowest-energy conformers from each of the
top 16 clusters were defined as the diversity set. Note that
the PARAM22/GB-SA scores could have been used instead
for ranking.

2.4. Replica Exchange.The replica exchange method
(ReX)42 is a state-of-the-art technique for sampling an energy
landscape. It has been used successfully in studies of protein
folding,43 loop structure prediction,44 and lattice-based protein
structure prediction.45 The concept behind the method is to
run multiple simultaneous molecular dynamics or Monte
Carlo simulations with a spectrum of biases and/or temper-
atures. The principle of using ReX in this study is to allow
for automatic unfolding of worse scoring structures and
refolding of better scoring structures. In this work, a range
of temperature windows is used, and we looked at the
performance of separately the PARAM22/GB-SA and DFIRE-
MD potential. After a specified block simulation time,τ,
windowsa andb exchange temperatures with a probability,
W:46

whereâ is 1/kBT andE is the potential energy of a particular
replica. We used 16 temperature windows ranging exponen-
tially from 298 to 650 K for the DFIRE-MD simulations
and 298 to 500 K for the PARAM22/GB-SA runs. The

different temperature ranges selected for each potential
reflected the fact that we tried to ramp up the temperature
for the DFIRE-MD simulations as high as possible to counter
the strong collapsing propensity of this potential, while
retaining some energy overlap between windows. The initial
structures placed in each window corresponded to the 16-
member diversity set described above. Block simulation
times,τ, were set to 0.4 ps. A total of 2500 exchange steps
were carried out, for a cumulative simulation time of 1 ns.
Molecular dynamics simulations were performed with the
CHARMM software package,41 and the replica exchange
method was performed with the MMTSBaarex.plprogram.47

Even though ReX enhances sampling, some accuracy will
be lost simply by having to filter out a small number of
structures to create a diversity set. Therefore, we decided to
also run every minimized decoy with 298 K molecular
dynamics for a small amount of simulation time, 1 ps, to
compare with the ReX simulations. With such short runs,
the relevant question was whether a small amount of
refinement could improve detection.

2.5. Z-Fold Method. Noting the strong attractive nature
of a pairwise statistical potential during a MD run, we
decided to utilize this feature to refold protein structures with
the aim of generating a diversity of conformations in the
vicinity of a given model structure. TheZ-foldmethod starts
by temperature unfolding (400 K) a protein model over a
short time with secondary structure restraints and only the
vdW and internal energy terms turned on. This is followed
by refolding with the DFIRE-MD potential retaining the
secondary structure restraints. In this work, the unfolding
simulations were performed for 10 ps, and refolding simula-
tions were performed for 6 ps. For each starting model, 10
unfolding simulations with different random seeds were
performed. For each unfolded structure, there were then 10
refolds performed, for a total of 100 refolded structures per
starting model. The secondary structure restraints were
obtained via the DSSP48 program evaluated on the original
model. Secondary structure restraints,Ess, of the form

were used to restrict the backbone dihedral angles of the
identified secondary structure elements to plus or minus the
width, w, from θmin. The force constant,K, was set to 100
kcal/mol/rad,2 w is the width of the potential, andθ
corresponds to either theφ- or æ-dihedral angles. For theR
helix restraints, the parameters werew ) 7°, φmin ) -64°,
andæmin ) -41°. For the beta-strand restraints, the param-
eters werew ) 40°, φmin ) -120°, andæmin ) +120°. The
16-member diversity sets for each protein were also the
starting models in this part of the study. After generation,
each refolded structure was minimized and rescored using
the PARAM22/GB-SA detection protocol described above.

2.6. Analysis Techniques.A popular measure of the
similarity of a model structure with the native conformation
is rmsd. In this work, rmsd is defined for the CR protein
backbone versus the native X-ray structure in units of Å. A
common evaluation of scoring functions is the Z-score, which
normalizes the score of the native,Enative, relative to the mean,

W(a S b) ) {1 ∆ab e 0
exp(- ∆ab) ∆ab > 0

∆ab ) (âa - âb)(Ea - Eb) (2)

Ess) K × max[0, abs(θ -
πθmin

180° ) - w]2

(3)
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Eh, and standard deviation,σ, of the scores of the decoy set:

The Z-score is a useful measure of the depth of the scoring
funnel, whereby greater negative values indicate deeper
funnels. Nonetheless, detecting a near-native structure from
a set of models can only be reliably achieved when there is
some propensity of the scoring function to favor structures
as they become more and more nativelike. Therefore, we
are concerned as well in this work with other criteria: the
rmsd of the lowest scoring structure (excluding the native);
the best rmsd of the top five scoring structures; the 15×
15% enrichment score;6 and statistical correlation between
rmsd and score. The 15× 15% enrichment score measures
the number of structures which are both in the top 15% of
scores and top 15% of RMSDs to native divided by the
number of structures one would expect by chance to satisfy
these two criteria. Summa et al.36 show that other measures
of the usefulness of a scoring potential are correlated
significantly with the ones we use here.

While CR rmsd is a popular measure of similarity of a
conformation to the native structure, it is sometimes helpful
to look at other similarity measures, such as fraction of native
contacts. The definition for fraction of native contacts is as
follows. First, for a given native structure, the native contacts
are identified as all side-chain center-of-mass pairs, (i,j): j
> i + 1, whose distances are less than 6.5 Å.49 Then for
each model conformation, the fraction of native contacts is
the number of native contacts in the model divided by the
total number of native contacts in the X-ray structure. In
this work, to conform to the directionality of rmsd scatter
plots, we take one minus the result.

3. Results
The following section considers separately detection and
refinement using two distinct scoring functions: DFIRE-
AA and PARAM22/GB-SA. In the detection subsection, we
consider the ability of these two scoring functions to find
near-native structures from large decoy sets of de novo-
generated conformations. In the refinement subsection, we
first ask whether short-time molecular dynamics enhances
the detection capabilities of the force field-based score. Then
we test the two scoring functions in a standard replica
exchange protocol to see whether small subsets of the decoy
sets can be induced toward the native state. Finally, noting
the collapsing propensities of the DFIRE-AA as a sampling
function, we evaluate the above-described unfold/refold
method with the same small subsets of decoys.

3.1. Detection.Table 1 outlines some of the features of
the decoy sets we chose. The best structures in each set have
CR RMSDs of∼3 Å and below. In contrast, the structures
with the best percentage of native contacts have only between
50% and 65% similarity. This means that 35-50% of the
native contacts are missing even in the best decoy structures.
Therefore, it might be conjectured that scoring functions with
atomic resolution may fail to detect the structures that are
closer to native, because they are still some distance away
in contact space. Finally, in only three of the nine protein

sets is the best rmsd structure also the closest to the native
in contact space.

The PARAM22/GB-SA potential is marginally better than
DFIRE-AA at detecting a low-rmsd structure using score
alone, as seen in Tables 2-4. Both potentials perform
roughly the same in detection if the top five scoring
conformations are considered. One can also see that the
average Z-score for the PARAM22/GB-SA is slightly
superior to the DFIRE-AA one. Furthermore, DFIRE-AA
fails to detect the native X-ray crystal structure for four
proteins (even with minimization), while PARAM22/GB-
SA fails for only two proteins. The 15× 15% enrichment
scores for both potentials are on average roughly the same,
while the standard deviation of these scores suggest DFIRE-
AA can be either better or worse than PARAM22/GB-SA
for a specific protein. For example, the DFIRE-AA potential
fares worse than chance (i.e., enrichment scores less than 1)
for three proteins, while the PARAM22/GB-SA enrichment
values are above chance in each protein case. Using a
clustering scheme to choose structures or sets of structures
is somewhat worse than single conformation detection for
DFIRE-AA (Tables 2 and 3) and significantly worse for
PARAM22/GB-SA (Table 4). In principle, clustering should

Zener)
Enative- Eh

σ
(4)

Table 2. Summary of Results for Detection of Structures
Using the DFIRE-AA Potential Score on the Original Decoy
Structures

PDB
ID Zener

rmsd of top
scoring

structure

best rmsd
of top 5
scoring

structures
enrichment
(15 × 15%)

av rmsd
of top
cluster

best av
rmsd of
top 5

clusters

1aila -2.3 8.7 4.5 0.69 9.2 7.1

1cspa -3.2 4.3 4.3 2.82 6.0 6.0

1ctf -3.5 3.3 3.3 1.85 4.8 4.8

1pgx -4.4 5.9 2.4 2.45 5.5 4.1

1r69 -3.6 2.2 1.5 3.49 3.5 3.5

1tif -5.1 7.8 3.9 0.96 5.1 5.0

1utga -1.3 10.7 6.7 0.54 6.2 6.2

1vif -2.8 0.6 0.6 4.80 3.8 3.8

5icba -2.2 4.3 4.3 2.19 5.7 5.7

avgb -3.2 5.3 3.5 2.20 (1.39) 5.5 5.1
a Native structure was not detected as the lowest in energy.

b Standard deviation in parentheses.

Table 3. Summary of Results for Detection of Structures
Using the DFIRE-AA Potential Score on the Minimized
Decoy Structuresa

PDB
ID Zener

rmsd of
top

scorer

best rmsd
of top 5
scoring

structures
enrichment
(15 × 15%)

av rmsd
of top
cluster

best av
rmsd of
top 5

clusters

1ailb -1.4 9.7 7.7 0.64 9.2 6.6

1cspb -3.1 4.3 3.9 2.78 6.0 6.0

1ctf -3.3 3.3 3.3 1.87 4.8 4.8

1pgx -3.6 5.9 2.4 2.52 4.2 4.1

1r69 -3.5 2.2 1.5 3.80 3.5 3.5

1tif -3.8 7.8 3.8 1.08 5.1 5.0

1utgb -0.5 5.4 5.4 0.30 6.2 6.2

1vif -2.2 0.6 0.6 4.71 3.8 3.8

5icbb -1.8 4.4 4.2 2.04 5.7 5.6

avgc -2.6 4.8 3.6 2.19 (1.45) 5.4 5.1
a Structures were minimized using the protocol specified in the

Methods section. b Native structure was not detected as the lowest
in energy. c Standard deviation in parentheses.
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help smooth out noise in the scoring function. In practice,
lingering clashes in specific structures are more penalized
in the PARAM22/GB-SA results, likely leading to worse
overall average cluster energies. Furthermore, cluster popula-
tions at this stage are unlikely to be fruitful, given that they
are dependent on the “thermodynamic” sampling of the
lower-resolution Rosetta united-residue function.

It is interesting to compare the results of the original paper
associated with the decoys we used.6 Tsai et al. reports an
average Z-score of-4.5 and enrichment value of 1.86 for
all 78 proteins using their single unifiedR/â scoring potential.
This is not a fair comparison between our results and theirs
as we are using a small manually selected subset of proteins

from their large collection. However, it shows that our force-
field results are in line with their analyses, which had used
a different atomic resolution potential.

In Figure 2, we show two examples of the detection
problem using the Rosetta decoy sets: an easy case and a
difficult case. In the easy situation, 1vif (Figure 2a,b), there
are several very near-native structures generated. Also, as
the structures approach the native, there is a downward slope
in energy. Structures below 1 Å in rmsd are detectable versus
the rest of the set using the PARAM22/GB-SA potential.
Furthermore, the lowest energy structure for this potential
is nearly the lowest rmsd.8 In contrast, in the difficult case,
the 1ail (Figure 2c,d) decoy set has few structures that are
better than 4 Å and only one structure better than 2 Å.
Visually, one might consider the group of structures in Figure
2c at∼4.5 Å have on average a better score than the other
group, which suggests that by clustering a∼4 Å conforma-
tion could be selected out. In reality, though, no such lower-
scoring cluster was identified (Table 4). Figure 2c also
illustrates how single structure detection can fail sometimes,
as it picks out the low-scoring conformation at 10.7 Å. Figure
2d shows that DFIRE-AA cannot discern the native structure
as lowest in energy. In addition, there are no visible trends
in this scatter plot.

Figure 3 illustrates the point that even if many 2 and 3 Å
structures are in the decoy set, they may have a lot of missing
native contacts. This provides some evidence of why atomic
resolution scoring functions may not detect these lower rmsd
structures. Figure 3b shows very little funnel-like behavior,
likely due to the large gap in native contact space between
the best decoys and the native structure. In Figure 3c, the

Table 4. Summary of Results for the Detection of
Structures Using the PARAM22/GB-SA Potential on the
Minimized Decoy Structuresa

PDB
ID Zener

rmsd of top
scoring

structure

best rmsd
of top 5
scoring

structures
enrichment
(15 × 15%)

av rmsd
of top
cluster

best av
rmsd of
top 5

clusters

1ail -3.3 10.7 4.0 2.58 6.6 6.6

1csp -4.2 4.5 4.3 1.82 6.0 6.0

1ctf -4.9 3.7 3.3 2.22 4.8 4.8

1pgx -5.5 2.4 2.4 1.32 5.5 4.5

1r69 -5.8 2.4 1.7 2.59 3.5 3.5

1tif -5.1 4.4 4.0 1.35 6.0 5.0

1utgb -2.1 4.7 4.6 1.55 6.2 6.2

1vif -3.2 0.5 0.4 4.22 3.8 3.8

5icbb -1.8 4.1 4.0 1.66 8.4 5.6

avgc -4.0 4.2 3.2 2.15 (0.92) 5.6 5.1
a Structures were optimized using the protocol specified in the

Methods section. b Native structure was not detected as the lowest
in energy. c Standard deviation in parentheses.

Figure 2. Scatter plots of the PARAM22/GB-SA and DFIRE-AA potentials vs CR rmsd to native: (a-b) 1vif, an easy test case
for detection and (c-d ) 1ail, a difficult test case for detection.
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structures between 2 and 4 Å begin to have some slope
toward more native contacts than the continuum of structures
in the set.

In Table 5, the funnel-like behavior of the two scoring
functions is further quantified by looking at the correlation
coefficient of the score to the rmsd of decoys which are close
to the native.7,50 In most proteins, small correlations do exist
between score and rmsd. However, in some notable cases,
such as 1tif and 1utg for DFIRE-AA and 1pgx for PARAM22/
GB-SA, the correlations are nearly zero or negative, indicat-
ing no funnel-like behavior. Since the Rosetta-generated
decoys do not completely span the conformation space of
our test proteins, the correlations are probably, in general,
underestimated. In fact, protein decoy sets obtained by

perturbation of the native structure tend to show improved
correlation between score and rmsd at various rmsd ranges
(results not shown).51

3.2. Refinement.Short-run MD results on every decoy
structure are presented in Table 6. The goal here was to
obtain quick refinement of all of the decoy structures in the
hopes that poor side-chain contacts in good rmsd structures
might be rectified and detection would be improved.
Unfortunately, single structure detection results were 2 Å
worse on average than minimization alone. Side-by-side
comparisons with the optimized structure results show that
dynamics increased detection errors for a few of the difficult
cases and 1pgx. Using the top five scoring conformations
criteria, the dynamics results are on par with simple
optimization. Finally, enrichment scores are overall enhanced
somewhat by short-time dynamics. While these simulations
lack equilibration at 298 K, which could be a source of error,
there is a practical compromise with simulation runtime when
thousands of structures must be simulated.8

Tables 7 and 8 summarize the results of ReX simulations
on a diversity set of conformations (N ) 16) for each protein.
Each small set includes at least one structure of∼3 Å rmsd
quality. The sampling nature of ReX-MD simulations
permits us to look at clusters and their respective populations

Figure 3. For the 1pgx decoy set, comparison of (a)
PARAM22/GB-SA score with CR rmsd, (b) PARAM22/GB-SA
score with fraction of native contacts, and (c) fraction of native
contacts with CR rmsd.

Table 5. Correlation Coefficient of DFIRE-AA and
PARAM22/GB-SA Scores vs RMSD as a Function of
Different RMSD Ranges of Conformations

DFIRE-AA PARAM22/GB-SA
PDB
ID <4 Å <6 Å all <4 Å <6 Å all

1ail -0.05 0.20 0.03 0.32 0.34 0.25
1csp 0.07 0.22 0.48 0.06 0.12 0.11
1ctf 0.06 0.22 0.43 0.17 0.30 0.23
1pgx 0.44 0.39 0.41 -0.03 -0.01 0.04
1r69 0.48 0.51 0.51 0.32 0.38 0.24
1tif -0.09 0.08 0.39 -0.16 0.13 0.06
1utg -0.09 -0.22 0.11 0.27 0.17 0.18
1vif 0.74 0.87 0.85 0.51 0.67 0.65
5icb 0.22 0.27 0.44 0.07 0.16 0.16
avg 0.20 0.28 0.41 0.17 0.25 0.21

Table 6. Summary of Results for Detection/Refinement of
Structures Using Short-Time Molecular Dynamics (1 ps)
with the PARAM22/GB-SA Potential

PDB
ID

rmsda of
top

scorerb

best rmsda

of top 5
scorersb

enrichment
(15 × 15%)

1ail 10.8 4.0 2.53
1csp 7.7 4.5 1.87
1ctf 4.0 3.6 1.94
1pgx 11.8 2.5 2.21
1r69 1.7 1.7 3.92
1tif 4.0 3.4 1.44
1utg 11.0 4.5 1.41
1vif 0.9 0.9 4.29
5icb 4.1 4.2 1.90
avgc 6.2 3.3 2.39 (1.04)

a rmsd defined with respect to the final structures of the dynamics
trajectories b Score defined as the average potential energy over the
short-time dynamics simulation. c Standard deviation in parentheses.
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at 298 K as analogous to free energies of these clusters. The
data indicate the cluster population offered better detection
than average energy for the DFIRE-MD potential but not
the PARAM22/GB-SA potential. Given the limited number
of proteins in this work, neither average energy nor free
energy can be distinguished as better than the other. In only
a few of the protein cases for both potentials did the lowest
rmsd starting conformation contribute significantly to the
lowest-energy cluster. This highlights the limitations of the
potentials and the fact that no significant folding funnel could
be discerned at such limited rmsd quality. Proteins 1ail and
1utg exemplify the latter constraint.

Interestingly, there are slight rmsd improvements, albeit
undetectable via energy criteria, which take place for both
potentials for most of the proteins.7,12 At 298 K, the
improvements average 0.2 Å for PARAM22/GB-SA. Over
all the temperature windows, improvements average as much

as 0.4 Å. In the case of DFIRE-MD, these rmsd improve-
ments may not reflect refinement as much as compacting of
the model structures. It is also noted that the best structures
were not produced and preserved in the lowest temperature
(298 K) window.

Some further details of a single replica exchange simula-
tion (1pgx/PARAM22-GBSA) are presented in Figure 4. The
progressions of the two lowest rmsd models, as seen in
Figure 4a, are quite different. The 2.4 Å structure stabilizes
and becomes lower in rmsd to about 2.0 Å, while the 1.4 Å
structure gets significantly worse over time. This divergence
can be explained in Figure 4b,c, where the 2.4 Å structure
spent much more time in cooler temperature windows than
the 1.4 Å model. Finally, as illustrated in Figure 4d, we note
that in the first 600+ ps, a 7 Åmodel dominates the lowest
temperature window. Consistent with this result, the data in
Table 8 indicate that the lowest free-energy cluster had an
average rmsd of∼7 Å. One might surmise that with further
sampling the 2.5 Å model would dominate the 298 K window
and be detected as the lowest in free energy.

Two more important points can be gleaned from Figure
4. First, the energy of a structure and not its rmsd to the
native dictates how the models will percolate through the
temperature windows. Hence, a poorly scoring low-rmsd
structure inserted into a simulation may end up getting
muddled by high temperatures. Second, the ReX simulations,
as computationally intensive as they are, generally must be
run for much longer simulation times than were done here
(e.g., 10-100 ns) to get convergent population statistics.

Overall, the ReX results are not as remarkable as the
simple detection schemes, despite the orders of magnitude
more computational effort. Our PARAM22/GB-SA replica
exchange on proteins of the size studied here required 2 days
of computation per protein on 16 AMD Athlon 2200+
processors. In contrast, the PARAM22/GB-SA detection
protocol on an entire decoy set required about 5 h on asingle
CPU.

Figure 5 illustrates that the DFIRE scores can be highly
correlated with the compactness of the conformations.
Although this trait may not be able to completely explain
DFIRE-AA detection abilities, it does suggest that running
on the DFIRE-MD energy surface could cause structures to
become more compact. In fact, Figure 6 illustrates that
DFIRE-MD tends to compress protein structures and make
them more spherical in shape. This can be attributed to the
fact that DFIRE-potential tends to maximize intraprotein
contacts. An opposing protein contact breaker, such as a
solvation term, is lacking.36 Despite the distortions caused
by DFIRE-MD, the potential is very expedient at forming
contacts. In Figure 7, one can see that a partially extended
conformation is quickly collapsed into a compact structure
in a mere 5 ps of simulation time.

Given the quick collapsing propensities of DFIRE-MD,
the Z-fold method was tested, and the results are summarized
in Table 9. As one can see, the results are not much better
than replica exchange on average. The lowest average energy
and lowest free-energy clusters are on par with clustering
results in the detection and replica exchange calculations.
Most noticeably, the best rmsd structure is on average 0.3

Table 7. Summary of Results for Detection and
Refinement of Structures from 1-ns Replica Exchange
Molecular Dynamics Simulations Using the DFIRE-MD
Potential

PDB
ID

best
rmsd in
diversity

set

lowest
rmsd

(298 K)

lowest
rmsd
(all T)

lowest av
energy
cluster

(rmsd)a,b

most
populated

cluster
(rmsd)a,b

1ail 5.3 5.3 4.9 10.9 10.9
1csp 3.6 3.5 3.4 8.0 5.7
1ctf 3.6 3.4 3.4 10.4 5.2
1pgx 1.5 1.9 1.0 8.8 8.8
1r69 1.5 1.1 1.1 3.5 1.5
1tif 4.1 4.0 3.5 4.9 4.9
1utg 4.8 5.7 4.8 8.4 10.4
1vif 0.6 0.6 0.6 9.4 3.7c

5icb 4.3 4.1 3.3 4.8 4.4
avg 3.3 3.3 2.9 7.7 6.2

a Structures and energies obtained from the final step of the
simulation block in the 298 K window. b rmsd was averaged over the
structures in the specified cluster. c Averaged over two clusters tied
for first, with RMSDs of 2.8 Å and 4.6 Å.

Table 8. Summary of Results for Detection and
Refinement of Structures via 1-ns Replica Exchange
Molecular Dynamics Simulations with the PARAM22/
GB-SA Potential

PDB
ID

best
rmsd in
diversity

set

lowest
rmsd

(298 K)

lowest
rmsd
(all T)

lowest av
energy
cluster

(rmsd)a,b,c

most
populated

cluster
(rmsd)a,b

1ail 5.3 5.2 4.8 6.8 11.8
1csp 3.6 3.4 3.4 7.0 4.2
1ctf 3.6 3.1 3.1 11.3 10.9
1pgx 1.5 1.7 1.6 6.5 7.1
1r69 1.5 1.3 1.3 3.0 3.0
1tif 4.1 3.9 3.6 6.1 6.1
1utg 4.8 4.4 4.1 5.7 10.0
1vif 0.6 0.7 0.7 2.0 1.8
5icb 4.3 4.2 3.4 5.0 5.0
avg 3.3 3.1 2.9 5.9 6.7

a Structures and energies were obtained from the final step of each
simulation block in the 298 K window. b rmsd was averaged over the
structures in the specified cluster. c Clusters with less than 10
elements were filtered out.
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Å better than the original best structure. Nevertheless, some
of the rmsd improvement could be due to the compacting
nature of the DFIRE-MD potential. Another issue is that
neither the DFIRE-MD nor the PARAM22/GB-SA potential
was able to detect the best rmsd structures. In Figure 8, it
appears that improvements in rmsd were achieved for
structures 2 Å and farther from the native. Sometimes rmsd
improvements could be detected by DFIRE-MD as illustrated
by the filled squares which lie above and below the zero
line. Once again, some structure compacting may be occur-
ring, and small rmsd improvements may not translate
completely as refinements.

4. Discussion
4.1. Decoy Set Properties.The ability to detect near-native
structures from a set of conformations is inevitably related
to the quality of structures in the set. If enough low-rmsd
structures are available, any good detection function should
be able to pick up at least some of these structures as better
in score than the rest. The extreme case of an easy decoy
set would be one where model structures are developed from
perturbations of the native. Small perturbation decoys would

Figure 4. Replica exchange results for the 1pgx diversity set using the PARAM22/GB-SA potential. (a) Comparison of 2.4 Å
(solid line) and 1.4 Å (dashed line) models. Temperature progressions of the (b) 2.4 Å, (c) 1.4 Å, and (d) 7 Å models.

Figure 5. Comparison of the DFIRE-AA score with radius of
gyration for the 1pgx decoy set.

Figure 6. DFIRE-MD compresses native 1pgx protein struc-
ture over a simulation time period of 1 ns: (left) native
structure and (right) after 1 ns of DFIRE-MD. Molecular
graphics rendered with VMD software.67
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be very near-native, and if the detection function labels the
native as best, it would likely label near-natives better than
misfolds.

Most of the low-rmsd structures in the Rosetta2 decoy sets
are culled from Rosetta runs of nearly 200 000 structures
per protein set. Generation of 200 000 structures for a single
target is roughly an order magnitude larger than the standard
automated server Robetta protocol. With today’s computing,
a single protein prediction would require effort on the order
of CPU-weeks52 to generate 200 000 models. Enrichment of
the decoy sets with low-rmsd structures seems to increase
the probability of detecting near-native structures, because
the likelihood that at least one near-native structure will
outscore all of the other structures increases. In addition, if
clustering is performed, the near-native enrichment may
provide a distinct cluster of structures from which to select.
Furthermore, analyses such as the colony energy method,14

which modifies the scores based on the presence of structural
neighbors, would be biased by the enrichment protocol since
as structures become closer to the native, they also become
closer to each other, hence enhancing the pairwise rmsd
weighting factors.

Bradley et al. shows that low-rmsd structures can often
be found by using sequences homologous to the target in
the Rosetta algorithm8 where only a total of 10-20 thousand
structures need to be built. Note that for the three proteins
in common between their test set and ours (1tif, (1r69, and
(1csp), their “Round 2” CR rmsd results (4.1, 1.2, and 4.7
Å) are quite comparable to our simple PARAM22/GB-SA
detection of their enriched decoy set (4.4, 2.4, and 4.5 Å).
This favorable comparison is likely due to the fact that
generating a large decoy set of 200 000 models increases
the probability that there will be enough lower rmsd
structures from which to detect. Moreover, it is unclear from
the work of Bradley et al., whether their improvements were
gained by increasing diversity or by using a computationally
intensive refinement procedure (100-150 CPU-days per
protein).

Despite the presence of near-native structures in every set
in this work based on rmsd, other indicators such as fraction
of native contacts suggest that the so-called near-natives are
not near enough. With only an average of 60% native

contacts for the best structures, it makes sense that the atomic
resolution scoring functions may have some difficulty in
detection. There are two reasons why the fraction of native
contacts may be lacking. First, the side-chain prediction
algorithm used for these decoy sets may not be optimal. Tests
of rebuilding side chains with the SCAP method53 led to
better overall DFIRE-AA scores (results not shown). The
other issue is that the fraction of native contacts may have,
in analogy to a scoring function, a narrow funnel versus
backbone rmsd. Most of the native contacts will collapse
into place only when the protein is very close to the native
in backbone rmsd space (see, for example, Figure 3c).

4.2. Scoring/Energy Functions.In this work, we looked
at two diverse scoring/energy functions: one force field-
based and the other statistically based. Force field-based
functions are considered to be accurate but have many
drawbacks. First, the standard van der Waals repulsion term
is very sensitive to the positions of neighboring atoms such
that structural minimization is required. Tsai et al. suggest
the use of finite core repulsion terms to alleviate this issue.6

A compromise, however, must be made to ensure that the
core is repulsive enough to filter out incorrectly packed
structures. Another problem with force field-based functions
is that the folding funnel is trying to mimic the physical
energy landscape of real proteins. As such, real proteins may
have a subtle free energy gradient toward the native that
requires long folding times (e.g., milliseconds to several
seconds). Compared to the standard simulation times possibly
using current computer resources, typically in the single-
digit nanosecond range, there is a gap of several orders of
magnitude.13 A final problem with force field-based poten-
tials is that they may be too inaccurate. Consequently, after
exceptional computational effort of using them, simulations
may still lead to unphysical structures.

One of the main problems with a pairwise-only statistical
potential such as DFIRE-AA is the lack of a microenviron-
ment or solvation term.36 Many scoring functions already
employ such additional terms.6,20,36This is needed because
pairwise contacts are not statistically independent in known
protein structures.36 We believe such additions might increase
the number of near-natives detected for some protein sets.
The DFIRE-AA potential, like other statistical potentials,
gleans information from native PDB structures. Conse-
quently, unfolded state information is noticeably absent. This
presumably leads to the large energy gradient in DFIRE-
AA seen in the protein collapsing simulations (Figures 6 and
7). Atomic force fields, on the other hand, contain a relatively
balanced description of unfolded and folded states. Thus,
the energetic differences and subsequent propensities to drive
folding are much more subtle and should be on the order of
5-15 kcal/mol, at least in terms of free energy.54 Skolnick
et al.20 suggest parametrizing an energy function based on
decoys/misfolds and near-natives. In this way, there is an
enforced funnel or directionality between the two extremes
which can be tuned to obtain a desired folding gradient.

The general issue regarding scoring functions is to what
extent can they be optimized to achieve a significant folding
funnel? Furthermore, the two key aspects of the funnel are
its depth and width. Maximization of the Z-score by Tsai et

Figure 7. Radius gyration as a function of simulation time
for the most extended model structure in the 1pgx decoy set
using the DFIRE-MD potential at a temperature of 298 K.
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al.6 is an example of maximizing the depth of the scoring
funnel such that the native is significantly lower in energy
than any decoys. On the other hand, increasing the width of
the funnel is also very important, since detection algorithms
will work only if one or more model structures are within
the funnel. It appears from our Z-score results, that the
DFIRE-AA potential has a modestly smaller funnel depth
than PARAM22/GB-SA. In addition, the overall increased
enrichment scores suggest DFIRE-AA has a slightly larger
funnel width. The problem with DFIRE-AA is that in some
of the test sets, enrichment scores were 1 or less, suggesting
that the funnel was nonexistent in the vicinity of the 15%
lowest rmsd structures. The compromise to creating a wide
and deep folding funnel is that, in general, the native
structures of most, if not all, aqueous proteins will need to
lie at or near the scoring function minimum.

4.3. Conformational Sampling.Many researchers have
found that all-atom MD simulations are unable to explore
diverse conformations at room-temperature despite simula-
tion times on the order of several nanoseconds.40 Fan and
Mark13 have suggested that even longer MD simulations on
the order of hundreds of nanoseconds or even microseconds
may be a viable technique for refinement. We agree that
sufficiently long simulations probably would succeed some
of the time. Invariably, though, simulation times of micro-

seconds or longer are still outside most researchers’ current
computing capabilities.55 Another difficulty is that the model
structure to be refined may be, for all practical purposes,
permanently trapped in a misfolded conformation. Misfolded
proteins in vivo often require either intervention from
chaperones or disposal by the cell machinery.56,57

In this work, we examined the ReX method which has
been used successfully by Zhang et al. to sample confor-
mational space with a sophisticated united-residue force
field.3 In fact, Misura et al.7 commented that the addition of
temperature might enhance sampling. Regrettably, the com-
bination of an all-atom force field and ReX may not be useful
without restraints, because high-temperature unfolding leads
to destruction of the informational content of the original
model. Furthermore, low-temperature refolding of a partially
denatured structure can take an inordinately long simulation
time when force-field potentials are used. In contrast, ReX
simulations can be successful in loop modeling,44 because
the number of degrees of freedom are small enough to be
sampled well within a feasible simulation time. In addition,
the restraints of the two loop stems limit the extent of
possible unfolded conformations.

Perhaps other sampling schemes such as Monte Carlo
might fare better. Misura et al. performed multiple zero
temperature Monte Carlo runs on small sets of decoys. They
employed backbone and side-chain rotamer move sets which
were able to find lower rmsd structures than the original
models. One drawback was their inability to sometimes detect
the lowest rmsd structures via an energy function alone.
Furthermore, there was a compromise between the size of
the move sets and the ability to sample rare side-chain
conformations that might be crucial to achieve correct
packing.7

The Z-fold method which entails a slight unfolding and
refolding of a model conformation is a compelling alterna-
tive. It stands in contrast to simply simulating the rearrange-
ment of a protein that is trapped in a misfolded compact
state. Also, the Z-fold approach benefits from a statistical
potential with a fast refolding process because the energy
gradient from the partially unfolded state to a compact state
is large. Nonetheless, there are several problems with using
a statistical potential. First, compacting will occur at local
levels causing distortion in secondary structures. This can
be ameliorated somewhat through the use of secondary

Table 9. Summary of Results for Detection and Refinement of Structures Using the Z-Fold Method

PDB
ID

best rmsd
diversity

set
best
rmsd

low av
energy
cluster

low free
energy
cluster

rmsd of
lowest
energy

best rmsd
of top 5

top
rescoreda

best rmsd
of top 5

rescoreda

1ail 5.3 5.0 11.9 8.6 7.6 7.6 7.7 7.5
1csp 3.6 3.3 4.2 4.2 3.4 3.4 4.5 4.1
1ctf 3.6 2.9 8.3 4.4 3.8 3.5 3.7 3.0
1pgx 1.5 1.2 2.1 5.7 10.5 2.0 2.2 1.2
1r69 1.5 1.0 1.5 5.7 1.1 1.1 1.1 1.1
1tif 4.1 3.9 5.2 6.9 5.1 5.0 5.2 5.2
1utg 4.8 4.2 10.9 5.1 10.9 5.0 10.5 9.3
1vif 0.6 1.6 2.5 5.1 3.1 1.9 2.9 1.8
5icb 4.3 3.8 2.9 3.9 9.0 4.3 8.4 2.8
avg 3.3 3.0 5.5 5.5 6.1 3.8 5.1 4.0
a Rescoring potential is PARAM22/GB-SA after standard structure optimization (see text).

Figure 8. Refinement capability of Z-fold method as a
function of rmsd of the original model for the 1pgx diversity
set. Closed circles represent the lowest rmsd structures in
the set, open circles denote the lowest rmsd structures out of
the top five scoring conformations, and shaded squares
represent the top scoring conformation.
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structure restraints. In addition, the folds produced will be
limited by the accuracy of the statistical potential. The most
visible effect of this occurrence is that proteins will tend to
form compact spherical structures as the competition with
solvent interactions is neglected (Figure 6). Furthermore,
lacking hydrogen atoms, detailed steric volume exclusions
and explicit hydrogen bonding are neglected. Perhaps, a
careful reweighing of energy terms and the introduction of
solvation-like terms may offer the best of both worldssa
relatively fast compacting potential with diminished un-
physical artifacts.

4.4. Future Directions.The fact that decoy sets with more
near-native rmsd structures fared better in the detection
results suggests that one should use lower-resolution models
to their fullest extent before constructing and scoring all-
atom models. Furthermore, all-atom model potentials are
replete with local minima which hindered our dynamics-
based optimization approaches. A good example of pushing
the limits of united residue models is the work of Zhang et
al.45 which describes a new generation of lattice-based united
residue models which can refine homology models to some
degree. Furthermore, Misura et al. have shown that searches
within the united-residue-based Rosetta protocol are capable
of building homology models better than those created by
simply constructing from a template.58

Given that the rmsd/score correlation values in Table 5
were suboptimal in critical rmsd ranges for most proteins,
another improvement we suggest is optimizing scoring
functions such as DFIRE-AA and PARAM22/GB-SA for the
protein structure detection and refinement problem. For
instance, the scoring funnel can be both deepened6 and
optimized to expedite folding.59 In addition, the energy
function can be smoothed60 or transformed to enhance
sampling.61,62 Finally, hybrid strategies for conformational
sampling that combine both knowledge-based and physical-
based energy functions may prove to be particularly effective
in refinement.12,26

Finally, all-atom molecular dynamics and standard replica-
exchange protocols may not be the optimal methods for
refinement as seen in our results. Large scale conformational
changes induced by molecular dynamics are likely to be slow
compared to large-scale moves possible in a Monte Carlo
approach. Alternatively, enumerative sampling methods have
been shown useful in small search problems such as
modeling of loop regions.15 Perhaps, local enumerative
optimization could be performed on structural regions
deemed to be unfavorable in energy. Regarding replica
exchange, recent work of Zuckerman, et al. suggests limita-
tions in this approach for the sole purposes of canonical
sampling at 298 K.63 Alternative sampling approaches should
be considered such as genetic algorithms64 and resolution
exchange.63

5. Conclusion
Statistical potentials are a fast alternative to force-field-based
potentials. Unfortunately, without reference to unfolded and
misfolded states in their parametrization they may not be
well suited to temperature-based sampling schemes.3 Ironi-
cally, this feature makes them useful in a framework where

fast refolding of structures is desired. The Z-fold method,
which can produce random rearrangements of model con-
formations, benefits greatly from the fast refolding capabili-
ties of the DFIRE-AA potential. Undesirably, the DFIRE-
AA potential, in particular, lacks certain multibody solvent
effects which will tend to cause a protein to minimize its
surface area and “sphericalize” regardless of the protein’s
actual fold type.

The force field potential we used here includes a state-
of-the-art implicit solvent model.65 As a tool for detecting
near-native structures, we believe this potential is on par with
other force field potentials currently available.66 However,
there are many deficiencies in the physics of most implicit
solvent force fields that still need to be addressed (e.g., charge
polarization, treatment of structural waters, etc.). Deficiencies
aside, the noisy nature of the energy landscape will require
creative new methods in exploring conformations adjacent
to the models generated by a lower-resolution potential.
Temperature-based sampling schemes, such as replica ex-
change using different temperature windows, may not be
helpful for the refinement problem on the atomic scale
without additional enhancements.
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